Numerical solution of nonlinear hyperbolic conservation laws using exponential splines

نویسندگان

  • B. J. McCartin
  • A. Jameson
چکیده

Previous theoretical (McCartin 1989a) and computational (McCartin 1989b) results on exponential splines are herein applied to provide approximate solutions of high order accuracy to nonlinear hyperbolic conservation laws. The automatic selection of certain "tension" parameters associated with the exponential spline allows the sharp resolution of shocks and the suppression of any attendant oscillations. Specifically, spatial derivatives are replaced by nodal derivatives of interpolatory splines and temporal discretization is achieved via a Runge-Kutta time stepping procedure. The fourth order accuracy of this scheme in both space and time (for uniform mesh and tension) is established and a linearized stability analysis is provided. The Lax-Wendroff theorem on convergence to weak solutions (Lax and Wendroff 1960) is then extended to spline approximations in conservation form. An implicit artificial viscosity term (Anderson et al. 1984) is included via upwinding in conservation form in order to assure convergence to the physically relevant weak solution. The efficacy of this procedure is illustrated on the inviscid Burgers' equation where the accurate capture of a travelling shockwave is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Stabilisation of hyperbolic conservation laws using conservative finite–volume schemes

We discuss numerical stabilisation of dynamics governed by nonlinear hyperbolic conservation laws through feedback boundary conditions. Using a discrete Lyapunov function we prove exponential decay of the discrete solution to first– order finite volume schemes in conservative form. Decay rates are established for a large class of finite volume schemes including the Lax–Friedrichs scheme. Theore...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Discontinuous Galerkin method for hyperbolic equations involving δ - functions 1

In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve hyperbolic equations involving δ-functions. We investigate negative-order norm error estimates for the accuracy of DG approximations to linear hyperbolic conservation laws in one space dimension with singular initial data. We prove that, by using piecewise k-th degree polynomials, at time t, the error in the H(R\...

متن کامل

NUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4

In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004